Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Antiviral Res ; : 105890, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657838

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic bunyavirus with a fatality rate of up to 40%. Currently, there are no licensed antiviral drugs for the treatment of CCHF; thus, the World Health Organization (WHO) listed the disease as a priority. A unique viral transcription initiation mechanism called "cap-snatching" is shared by influenza viruses and bunyaviruses. Thus, we tested whether baloxavir (an FDA-approved anti-influenza drug that targets the "cap-snatching" mechanism) could inhibit CCHFV infection. In cell culture, baloxavir acid effectively inhibited CCHFV infection and targeted CCHFV RNA transcription/replication. However, it has weak oral bioavailability. Baloxavir marboxil (the oral prodrug of baloxavir) failed to protect mice against a lethal dose challenge of CCHFV. To solve this problem, baloxavir sodium was synthesized owing to its enhanced aqueous solubility and pharmacokinetic properties. It consistently and significantly improved survival rates and decreased tissue viral loads. This study identified baloxavir sodium as a novel scaffold structure and mechanism of anti-CCHF compound, providing a promising new strategy for clinical treatment of CCHF after further optimization.

2.
Environ Pollut ; 348: 123847, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552771

RESUMO

Copper pollution has become global environmental concern. Widespread Cu pollution results in excessive Cu exposure in human. Epidemiological studies and animal experiments revealed that Cu exposure might have reproductive toxicity. Cuproptosis is a newly reported Cu-dependent and programmed cell death formTsvetkov et al., 2022. However, whether copper exposure at real environmental exposure dose might cause placental cuproptosis and induce miscarriage was completely unexplored. In this study, we found that Cu exposure during pregnancy induced miscarriage or complete pregnancy loss by inducing placenta cuproptosis in CuCl2-exposed pregnant mice. Notably, Cu exposure at 1.3 mg/kg/d (a real environmental exposure dose) was enough to cause placenta cuproptosis. CuCl2 exposure disrupts the TCA cycle, causes proteotoxic stress, increases Cu2+ ion import/decreases Cu2+ export, and results in the loss of Fe-S cluster proteins in mouse placenta, which induces placenta cuproptosis. Moreover, we also identified that Cu exposure down-regulates the expression levels of mmu-miR-3473b, which interacts with Dlst or Rtel1 mRNA and simultaneously positively regulates Dlst or Rtel1 expression, thereby disrupting the TCA cycle and resulting in the loss of Fe-S cluster proteins, and thus epigenetically regulates placental cuproptosis. Treatment with TTM (a cuproptosis inhibitor) suppressed placental cuproptosis and alleviated miscarriage in CuCl2-exposed mice. This work provides novel reproductive toxicity of Cu exposure in miscarriage or complete pregnancy loss by causing placental cuproptosis. This study also provides new ways for further studies on other toxicological effects of Cu and proposes a new approach for protection against Cu-induced reproductive diseases.


Assuntos
Aborto Espontâneo , Gravidez , Humanos , Feminino , Animais , Camundongos , Aborto Espontâneo/induzido quimicamente , Cobre/toxicidade , Placenta , Exposição Ambiental , Poluição Ambiental , Apoptose
3.
Virol Sin ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521412

RESUMO

The high risk of SARS-CoV-2 infection and reinfection and the occurrence of post-acute pulmonary sequelae have highlighted the importance of understanding the mechanism underlying lung repair after injury. To address this concern, comparative and systematic analyses of SARS-CoV-2 infection in COVID-19 patients and animals were conducted. In the lungs of nine patients who died of COVID-19 and one recovered from COVID-19 but died of unrelated disease in early 2020, damage-related transient progenitor (DATP) cells expressing CK8 marker proliferated significantly. These CK8+ DATP cells were derived from bronchial CK5+ basal cells. However, they showed different cell fate toward differentiation into type I alveolar cells in the deceased and convalescent patients, respectively. By using a self-limiting hamster infection model mimicking the dynamic process of lung injury remodeling in mild COVID-19 patients, the accumulation and regression of CK8+ cell marker were found to be closely associated with the disease course. Finally, we examined the autopsied lungs of two patients who died of infection by the recent Omicron variant and found that they only exhibited mild pathological injury with no CK8+ cell proliferation. These results indicate a clear pulmonary cell remodeling route and suggest that CK8+ DATP cells play a primary role in mediating alveolar remodeling, highlighting their potential applications as diagnostic markers and therapeutic targets.

4.
Part Fibre Toxicol ; 21(1): 13, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454452

RESUMO

BACKGROUND: With rapid increase in the global use of various plastics, microplastics (MPs) and nanoplastics (NPs) pollution and their adverse health effects have attracted global attention. MPs have been detected out in human body and both MPs and NPs showed female reproductive toxicological effects in animal models. Miscarriage (abnormal early embryo loss), accounting for 15-25% pregnant women worldwide, greatly harms human reproduction. However, the adverse effects of NPs on miscarriage have never been explored. RESULTS: In this study, we identified that polystyrene (PS) plastics particles were present in women villous tissues. Their levels were higher in villous tissues of unexplained recurrent miscarriage (RM) patients vs. healthy control (HC) group. Furthermore, mouse assays further confirmed that exposure to polystyrene nanoplastics (PS-NPs, 50 nm in diameter, 50 or 100 mg/kg) indeed induced miscarriage. In mechanism, PS-NPs exposure (50, 100, 150, or 200 µg/mL) increased oxidative stress, decreased mitochondrial membrane potential, and increased apoptosis in human trophoblast cells by activating Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3 signaling through mitochondrial pathway. The alteration in this signaling was consistent in placental tissues of PS-NPs-exposed mouse model and in villous tissues of unexplained RM patients. Supplement with Bcl-2 could efficiently suppress apoptosis in PS-NPs-exposed trophoblast cells and reduce apoptosis and alleviate miscarriage in PS-NPs-exposed pregnant mouse model. CONCLUSIONS: Exposure to PS-NPs activated Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3, leading to excessive apoptosis in human trophoblast cells and in mice placental tissues, further inducing miscarriage.


Assuntos
Aborto Espontâneo , Nanopartículas , Gravidez , Feminino , Humanos , Animais , Camundongos , Aborto Espontâneo/induzido quimicamente , Poliestirenos/toxicidade , Caspase 3 , Microplásticos , Plásticos , Caspase 2 , Placenta , Apoptose , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-bcl-2 , Nanopartículas/toxicidade
5.
PLoS Pathog ; 20(2): e1011948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300972

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neutralizing antibodies are a promising approach to treat virus infectious diseases. This study generated 37 mouse-derived specific monoclonal antibodies against CCHFV Gc subunit. Neutralization assays using pseudotyped virus and authentic CCHFV identified Gc8, Gc13, and Gc35 as neutralizing antibodies. Among them, Gc13 had the highest neutralizing activity and binding affinity with CCHFV Gc. Consistently, Gc13, but not Gc8 or Gc35, showed in vivo protective efficacy (62.5% survival rate) against CCHFV infection in a lethal mouse infection model. Further characterization studies suggested that Gc8 and Gc13 may recognize a similar, linear epitope in domain II of CCHFV Gc, while Gc35 may recognize a different epitope in Gc. Cryo-electron microscopy of Gc-Fab complexes indicated that both Gc8 and Gc13 bind to the conserved fusion loop region and Gc13 had stronger interactions with sGc-trimers. This was supported by the ability of Gc13 to block CCHFV GP-mediated membrane fusion. Overall, this study provides new therapeutic strategies to treat CCHF and new insights into the interaction between antibodies with CCHFV Gc proteins.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Camundongos , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Anticorpos Monoclonais , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Epitopos
6.
Redox Biol ; 70: 103073, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335622

RESUMO

Defects of human trophoblast cells may induce miscarriage (abnormal early embryo loss), which is generally regulated by lncRNAs. Ferroptosis is a newly identified iron-dependent programmed cell death. Hypoxia is an important and unavoidable feature in mammalian cells. However, whether hypoxia might induce trophoblast cell ferroptosis and then induce miscarriage, as well as regulated by a lncRNA, was completely unknown. In this work, we discovered at the first time that hypoxia could result in ferroptosis of human trophoblast cells and then induce miscarriage. We also identified a novel lncRNA (lnc-HZ06) that simultaneously regulated hypoxia (indicated by HIF1α protein), ferroptosis, and miscarriage. In mechanism, HIF1α-SUMO, instead of HIF1α itself, primarily acted as a transcription factor to promote the transcription of NCOA4 (ferroptosis indicator) in hypoxic trophoblast cells. Lnc-HZ06 promoted the SUMOylation of HIF1α by suppressing SENP1-mediated deSUMOylation. HIF1α-SUMO also acted as a transcription factor to promote lnc-HZ06 transcription. Thus, both lnc-HZ06 and HIF1α-SUMO formed a positive auto-regulatory feedback loop. This loop was up-regulated in hypoxic trophoblast cells, in RM villous tissues, and in placental tissues of hypoxia-treated mice, which further induced ferroptosis and miscarriage by up-regulating HIF1α-SUMO-mediated NCOA4 transcription. Furthermore, knockdown of either murine lnc-hz06 or Ncoa4 could efficiently suppress ferroptosis and alleviate miscarriage in hypoxic mouse model. Taken together, this study provided new insights in understanding the regulatory roles of lnc-HZ06/HIF1α-SUMO/NCOA4 axis among hypoxia, ferroptosis, and miscarriage, and also offered an effective approach for treatment against miscarriage.


Assuntos
Aborto Espontâneo , Ferroptose , RNA Longo não Codificante , Camundongos , Feminino , Humanos , Gravidez , Animais , Ferroptose/genética , RNA Longo não Codificante/genética , Placenta , Hipóxia Celular , Hipóxia/genética , Fatores de Transcrição , Trofoblastos , Mamíferos , Coativadores de Receptor Nuclear
7.
Adv Sci (Weinh) ; 11(13): e2207435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286681

RESUMO

Human trophoblast cells are crucial for healthy pregnancy. However, whether the defective homologous recombination (HR) repair of dsDNA break (DSB) in trophoblast cells may induce miscarriage is completely unknown. Moreover, the abundance of BRCA1 (a crucial protein for HR repair), its recruitment to DSB foci, and its epigenetic regulatory mechanisms, are also fully unexplored. In this work, it is identified that a novel lnc-HZ10, which is highly experssed in villous tissues of recurrent miscarriage (RM) vs their healthy control group, suppresses HR repair of DSB in trophoblast cell. Lnc-HZ10 and AhR (aryl hydrocarbon receptor) form a positive feedback loop. AhR acts as a transcription factor to promote lnc-HZ10 transcription. Meanwhile, lnc-HZ10 also increases AhR levels by suppressing its CUL4B-mediated ubiquitination degradation. Subsequently, AhR suppresses BRCA1 transcription; and lnc-HZ10 (mainly 1-447 nt) interacts with γ-H2AX; and thus, impairs its interactions with BRCA1. BPDE exposure may trigger this loop to suppress HR repair in trophoblast cells, possibly inducing miscarriage. Knockdown of murine Ahr efficiently recovers HR repair in placental tissues and alleviates miscarriage in a mouse miscarriage model. Therefore, it is suggested that AhR/lnc-HZ10/BRCA1 axis may be a promising target for alleviation of unexplained miscarriage.


Assuntos
Aborto Espontâneo , Reparo de DNA por Recombinação , Humanos , Feminino , Camundongos , Gravidez , Animais , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Aborto Espontâneo/genética , Placenta/metabolismo , Trofoblastos/metabolismo , Proteínas Culina/genética
8.
ACS Nano ; 18(4): 3733-3751, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252510

RESUMO

Nanoplastics (NPs), as emerging pollutants, have attracted global attention. Nevertheless, the adverse effects of NPs on female reproductive health, especially unexplained miscarriage, are poorly understood. Defects of trophoblast cell migration and invasion are associated with miscarriage. Migrasomes were identified as cellular organelles with largely unidentified functions. Whether NPs might affect migration, invasion, and migrasome formation and induce miscarriage has been completely unexplored. In this study, we selected polystyrene nanoplastics (PS-NPs, 50 nm) as a model of plastic particles and treated human trophoblast cells and pregnant mice with PS-NPs at doses near the actual environmental exposure doses of plastic particles in humans. We found that exposure to PS-NPs induced a pregnant mouse miscarriage. PS-NPs suppressed ROCK1-mediated migration/invasion and migrasome formation. SOX2 was identified as the transcription factor of ROCK1. PS-NPs activated autophagy and promoted the autophagy degradation of SOX2, thus suppressing SOX2-mediated ROCK1 transcription. Supplementing with murine SOX2 or ROCK1 could efficiently rescue migration/invasion and migrasome formation and alleviate miscarriage. Analysis of the protein levels of SOX2, ROCK1, TSPAN4, NDST1, P62, and LC-3BII/I in PS-NP-exposed trophoblast cells, villous tissues of unexplained miscarriage patients, and placental tissues of PS-NP-exposed mice gave consistent results. Collectively, this study revealed the reproductive toxicity of nanoplastics and their potential regulatory mechanism, indicating that NP exposure is a risk factor for female reproductive health.


Assuntos
Aborto Espontâneo , Nanopartículas , Poluentes Químicos da Água , Gravidez , Humanos , Feminino , Animais , Camundongos , Microplásticos , Poliestirenos , Placenta , Autofagia , Trofoblastos , Quinases Associadas a rho
9.
Virol Sin ; 39(1): 113-122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008382

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) caused by the SFTS virus (SFTSV) is an emerging disease in East Asia with a fatality rate of up to 30%. However, the viral-host interaction of SFTSV remains largely unknown. The heat-shock protein 90 (Hsp90) family consists of highly conserved chaperones that fold and remodel proteins and has a broad impact on the infection of many viruses. Here, we showed that Hsp90 is an important host factor involved in SFTSV infection. Hsp90 inhibitors significantly reduced SFTSV replication, viral protein expression, and the formation of inclusion bodies consisting of nonstructural proteins (NSs). Among viral proteins, NSs appeared to be the most reduced when Hsp90 inhibitors were used, and further analysis showed that their translation was affected. Co-immunoprecipitation of NSs with four isomers of Hsp90 showed that Hsp90 ß specifically interacted with them. Knockdown of Hsp90 ß expression also inhibited replication of SFTSV. These results suggest that Hsp90 ß plays a critical role during SFTSV infection and could be a potential target for the development of drugs against SFTS.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/genética , Phlebovirus/genética , Interações entre Hospedeiro e Microrganismos
10.
J Leukoc Biol ; 115(1): 116-129, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37648663

RESUMO

Rheumatoid arthritis is an autoimmune disease characterized by synovium hyperplasia and bone destruction. Macrophage extracellular traps are released from macrophages under various stimuli and may generate stable autoantigen-DNA complexes, as well as aggravate autoantibody generation and autoimmune responses. We aimed to investigate the role of macrophage extracellular traps on the biologic behaviors of rheumatoid arthritis fibroblast-like synoviocytes. Synovial tissues and fibroblast-like synoviocytes were obtained from patients with rheumatoid arthritis. Extracellular traps in synovium and synovial fluids were detected by immunofluorescence, immunohistochemistry, and SYTOX Green staining. Cell viability, migration, invasion, and cytokine expression of rheumatoid arthritis fibroblast-like synoviocytes were assessed by CCK-8, wound-healing assay, Transwell assays, and quantitative real-time polymerase chain reaction, respectively. RNA sequencing analysis was performed to explore the underlying mechanism, and Western blot was used to validate the active signaling pathways. We found that extracellular trap formation was abundant in rheumatoid arthritis and positively correlated to anti-CCP. Rheumatoid arthritis fibroblast-like synoviocytes stimulated with purified macrophage extracellular traps demonstrated the obvious promotion in tumor-like biologic behaviors. The DNA sensor cGAS in rheumatoid arthritis fibroblast-like synoviocytes was activated after macrophage extracellular trap stimuli. RNA sequencing revealed that differential genes were significantly enriched in the PI3K/Akt signaling pathway, and cGAS inhibitor RU.521 effectively reversed the promotion of tumor-like biologic behaviors in macrophage extracellular trap-treated rheumatoid arthritis fibroblast-like synoviocytes and downregulated the PI3K/Akt activation. In summary, our study demonstrates that macrophage extracellular traps promote the pathogenically biological behaviors of rheumatoid arthritis fibroblast-like synoviocytes through cGAS-mediated activation of the PI3K/Akt signaling pathway. These findings provide a novel insight into the pathogenesis of rheumatoid arthritis and the mechanisms of macrophages in modulating rheumatoid arthritis fibroblast-like synoviocyte tumor-like behaviors.


Assuntos
Artrite Reumatoide , Produtos Biológicos , Armadilhas Extracelulares , Neoplasias , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Armadilhas Extracelulares/metabolismo , Proliferação de Células , Transdução de Sinais , Artrite Reumatoide/patologia , Nucleotidiltransferases , Neoplasias/patologia , Fibroblastos , DNA/metabolismo , Produtos Biológicos/farmacologia , Células Cultivadas
11.
Environ Pollut ; 342: 123109, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086509

RESUMO

Urban vegetation can effectively filter and adsorb particulate matter (PM). However, limited studies have been conducted on the PM retention capacity of tree barks. This study investigated the ability of five common urban tree species in the Yangtze River Delta region to retain PM through their barks and leaves by conducting a 14-day tree PM retention experiment on the five tree species during autumn and winter. The results showed that (1) the PM retention per unit area of bark was 6.9 times and 11.8 times higher than that of leaves during autumn and winter, respectively; (2) when considering total surface area, bark and leaves exhibited comparable PM retention capacities at the whole-plant scale; (3) the ability of bark to retain PM is species-specific, which can be attributed to different bark morphology among different tree species; and (4) bark and leaves exhibited distinct preferences for retaining PM of different particle sizes, even when exposed to similar environmental conditions. This study highlights the remarkable ability of tree bark to PM removal and provides valuable insights into the role of urban trees in mitigating PM pollution. Furthermore, these findings can provide valuable insights into studies on dry deposition modelling, urban planning, and green space management strategies.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Árvores , Poluentes Atmosféricos/análise , Casca de Planta/química , Monitoramento Ambiental/métodos , Folhas de Planta/química
12.
Stem Cell Res Ther ; 14(1): 361, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087340

RESUMO

BACKGROUND: The ongoing coronavirus disease 2019 (COVID-19) pandemic has had an enormous impact on our societies. Moreover, the disease's extensive and sustained symptoms are now becoming a nonnegligible medical challenge. In this respect, data indicate that heart failure is one of the most common readmission diagnoses among COVID-19 patients. METHODS: In this study, we used human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes to develop an in vitro model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and studied the dynamic changes occurring in cardiomyocytes after SARS-CoV-2 infection. RESULTS: To this end, we have created an effective time series SARS-CoV-2 infection model exhibiting different functional patterns of up- and downregulated proteins, and demonstrating that SARS-CoV-2 mainly affects (i) the lipid and the energy metabolism of hiPSC-derived cardiomyocytes during the early infection stage, and (ii) the DNA repair ability of cardiomyocytes during the late infection stage. By analyzing the proteome changes occurring at different infection timepoints, we were able to observe that the simulated disease (COVID-19) course developed rapidly, and that each of the studied timepoints was characterized by a distinct protein expression pattern. CONCLUSIONS: Our findings highlight the importance of early detection and personalized treatment based on the disease stage. Finally, by combing the proteomics data with virus-host interaction network analysis, we were able to identify several potential drug targets for the disease.


Assuntos
COVID-19 , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo
13.
Nat Commun ; 14(1): 7365, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963884

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 pathogen requiring urgent research and development efforts. The glycoproteins of CCHFV, Gn and Gc, are considered to play multiple roles in the viral life cycle by interactions with host cells; however, these interactions remain largely unclear to date. Here, we analyzed the cellular interactomes of CCHFV glycoproteins and identified 45 host proteins as high-confidence Gn/Gc interactors. These host molecules are involved in multiple cellular biological processes potentially associated with the physiological actions of the viral glycoproteins. Then, we elucidated the role of a representative cellular protein, HAX1. HAX1 interacts with Gn by its C-terminus, while its N-terminal region leads to mitochondrial localization. By the strong interaction, HAX1 sequestrates Gn to mitochondria, thus depriving Gn of its normal Golgi localization that is required for functional glycoprotein-mediated progeny virion packaging. Consistently, the inhibitory activity of HAX1 against viral packaging and hence propagation was further elucidated in the contexts of pseudotyped and authentic CCHFV infections in cellular and animal models. Together, the findings provide a systematic CCHFV Gn/Gc-cell protein-protein interaction map, but also unravel a HAX1/mitochondrion-associated host antiviral mechanism, which may facilitate further studies on CCHFV biology and therapeutic approaches.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo
14.
Sci Bull (Beijing) ; 68(24): 3192-3206, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37993332

RESUMO

The global emergence of SARS-CoV-2 variants has led to increasing breakthrough infections in vaccinated populations, calling for an urgent need to develop more effective and broad-spectrum vaccines to combat COVID-19. Here we report the preclinical development of RQ3013, an mRNA vaccine candidate intended to bring broad protection against SARS-CoV-2 variants of concern (VOCs). RQ3013, which contains pseudouridine-modified mRNAs formulated in lipid nanoparticles, encodes the spike (S) protein harboring a combination of mutations responsible for immune evasion of VOCs. Here we characterized the expressed S immunogen and evaluated the immunogenicity, efficacy, and safety of RQ3013 in various animal models. RQ3013 elicited robust immune responses in mice, hamsters, and nonhuman primates (NHP). It can induce high titers of antibodies with broad cross-neutralizing ability against the wild-type, B.1.1.7, B.1.351, B.1.617.2, and the newly emerging Omicron variants. In mice and NHP, two doses of RQ3013 protected the upper and lower respiratory tract against infection by SARS-CoV-2 and its variants. Furthermore, our safety assessment of RQ3013 in NHP showed no observable adverse effects. These results provide strong support for the evaluation of RQ3013 in clinical trials and suggest that it may be a promising candidate for broad protection against COVID-19 and its variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas de mRNA , Animais , Cricetinae , Camundongos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas de mRNA/imunologia , SARS-CoV-2/genética , Primatas , Imunogenicidade da Vacina , Anticorpos Amplamente Neutralizantes , Anticorpos Antivirais
15.
Anal Chem ; 95(34): 12982-12991, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37587428

RESUMO

Recently, magnetic beads (MBs) are moving toward chemiluminescence (CL) functional magnetic nanomaterials with a great potential for constructing label-free immunosensors. However, most of the CL-functionalized MBs suffer from scarce binding sites, easy aggregation, and leakage of CL reagents, which will ultimately affect the analytical performance of immunosensors. Herein, by using core-shell Fe3O4@Au/Ag magnetic nanomaterials as a nanoplatform, a novel N-(4-aminobutyl)-N-ethylisopropanol (ABEI) and Co2+ dual-functionalized magnetic nanomaterial, namely, Fe3O4@Au/Ag/ABEI/Co2+, with strong and stable CL emission was successfully synthesized. Its CL intensity was 36 and 3.5 times higher than that of MB@ABEI-Au/Co2+ and ABEI and Co2+ dual-functionalized chemiluminescent MBs previously reported by our group, respectively. It was found that the excellent CL performance of Fe3O4@Au/Ag/ABEI/Co2+ could be attributed to the enrichment effect of the Au/Ag shell and the synergistic enhance effect of the Au/Ag shell and Co2+. A related CL mechanism has been proposed. Afterward, based on the intense and stable CL emission of Fe3O4@Au/Ag/ABEI/Co2+, a sensitive and effective label-free CL immunosensor for exosome detection was established. It exhibited excellent analytical performance with a wide detection range of 3.1 × 103 to 3.1 × 108 particles/mL and a low detection limit of 2.1 × 103 particles/mL, which were better than the vast majority of the reported CL immunosensors. Moreover, the proposed label-free CL immunosensor was successfully used to detect exosomes in human serum samples and enabled us to distinguish healthy persons and lung cancer patients. It has the potential to be a powerful tool for exosome study and early cancer diagnosis.


Assuntos
Técnicas Biossensoriais , Exossomos , Nanoestruturas , Humanos , Imunoensaio , Luminescência
16.
Virology ; 587: 109857, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562288

RESUMO

The open reading frame 109 (ac109) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is one of the 38 core baculovirus genes. Ac109 was shown to be essential for the production of infectious budded virions (BV), envelopment of the nucleocapsid, and embedding of occlusion-derived virions (ODVs) into occlusion bodies (OBs). Herein, the roles of five cysteines with high conservation (C3, C116, C128, C250, and C325) in Ac109 function were investigated. AcMNPV bacmids lacking ac109 or containing single-mutated ac109 were generated. Transfection/infection assays showed that C128 and C250 in Ac109 were important for infectious BV production. Electron microscopy analysis further confirmed that these two cysteines played critical roles in nucleocapsid assembly, ODV envelopment, and embedding of ODVs into OBs. Altogether, these results demonstrate that the conserved residues Ac109 C128 and C250 are critical for baculovirus infection.

17.
Nat Commun ; 14(1): 3935, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402737

RESUMO

Azide-alkyne cycloaddition reaction is a very common organic reaction to synthesize nitrogen-containing heterocycles. Once catalyzed by Cu(I) or Ru(II), it turns out to be a click reaction and thus is widely applied in chemical biology for labeling. However, besides their poor regioselectivity towards this reaction, these metal ions are not biologically friendly. Hence, it is an urgent need to develop a metal-free azide-alkyne cycloaddition reaction for biomedical applications. In this work, we found that, in the absence of metal ions, supramolecular self-assembly in an aqueous solution could realize this reaction with excellent regioselectivity. Nap-Phe-Phe-Lys(azido)-OH firstly self-assembled into nanofibers. Then, Nap-Phe-Phe-Gly(alkynyl)-OH at equivalent concentration approached to react with the assembly to yield the cycloaddition product Nap-Phe-Phe-Lys(triazole)-Gly-Phe-Phe-Nap to form nanoribbons. Due to space confinement effect, the product was obtained with excellent regioselectivity. Employing the excellent properties of supramolecular self-assembly, we are applying this strategy to realize more reactions without metal ion catalysis.

18.
Food Sci Nutr ; 11(6): 3309-3319, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324858

RESUMO

Osteoporosis is a systemic osteopathy characterized by bone metabolism disorders that become more serious with age increases in postmenopausal women. Recent studies have found that antler protein is the main bioactive component of cervus pantotrichum, and it has a positive regulatory effect on bone metabolism and can improve estrogen level. This study aimed to investigate the effect of velvet antler extract (VAE) on the prevention of osteoporosis and the modulation of gut microbiota in ovariectomized (OVX) mice. OVX mice treated with 12 weeks of VAE exhibited higher levels of serum BGP, Ca2+, CT, and HyP (p < .05). Micro-CT scans showed that VAE significantly elevated bone volume fraction (BV/TV), trabecular bone number (Tb.N), trabecular bone thickness (Tb.Th), trabecular bone connection density (Conn.D), decreased trabecular separation (Tb.Sp), and structural modality index (SMI) than untreated OVX mice. The right tibial retinaculum in the VAE group was clearer, with a clearer reticular structure, smaller gaps, a tighter distribution, and a more orderly arrangement. The gut microbiota of the cecal contents was analyzed by 16 s rDNA amplicon sequencing. The data indicated that VAE modulated the species, numbers, and diversity of the gut microbiota in OVX mice. Ovariectomy caused dysbiosis of the intestinal microbiota by increasing the ratio of Firmicutes to Bacteroidetes in mice, but the ratio decreased after treatment with VAE. These results suggest that VAE has a therapeutic effect on OVX mice via modulate bone-related biochemical markers in serum and structure of gut microbiota.

19.
Adv Sci (Weinh) ; 10(24): e2300383, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340596

RESUMO

Endometrial cancer (EC) is the most common female reproductive tract cancer and its incidence has been continuously increasing in recent years. The underlying mechanisms of EC tumorigenesis remain unclear, and efficient target therapies are lacking, for both of which feasible endometrial cancer animal models are essential but currently limited. Here, an organoid and genome editing-based strategy to generate primary, orthotopic, and driver-defined ECs in mice is reported. These models faithfully recapitulate the molecular and pathohistological characteristics of human diseases. The authors names these models and similar models for other cancers as organoid-initiated precision cancer models (OPCMs). Importantly, this approach can conveniently introduce any driver mutation or a combination of driver mutations. Using these models,it is shown that the mutations in Pik3ca and Pik3r1 cooperate with Pten loss to promote endometrial adenocarcinoma in mice. In contrast, the Kras G12D mutati led to endometrial squamous cell carcinoma. Then, tumor organoids are derived from these mouse EC models and performed high-throughput drug screening and validation. The results reveal distinct vulnerabilities of ECs with different mutations. Taken together, this study develops a multiplexing approach to model EC in mice and demonstrates its value for understanding the pathology of and exploring the potential treatments for this malignancy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Endométrio , Feminino , Animais , Camundongos , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Mutação/genética , Modelos Animais
20.
AAPS PharmSciTech ; 24(5): 136, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308749

RESUMO

Cyclodextrin metal-organic frameworks (CD-MOFs) exhibit a high structural diversity, which contributes to their functional properties. In this study, we have successfully synthesized a novel type of ß-cyclodextrin metal-organic framework (ß-CD-POF(I)) that exhibits excellent drug adsorption capacity and enhances stability. Single-crystal X-ray diffraction analysis revealed that ß-CD-POF(I) possessed the dicyclodextrin channel moieties and long-parallel tubular cavities. Compared with the reported ß-CD-MOFs, the ß-CD-POF(I) has a more promising drug encapsulation capability. Here, the stability of vitamin A palmitate (VAP) was effectively improved by the solvent-free method. Molecular modeling and other characterization techniques like synchrotron radiation Fourier transform infrared spectroscopy (SR-FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and nitrogen adsorption isotherm were applied to confirm that the VAP was successfully encapsulated into the channel formed by the dicyclodextrin pairs. Furthermore, the mechanism of stability enhancement for VAP was determined to be due to the constraint and separation effects of ß-CD pairs on VAP. Therefore, ß-CD-POF(I) is capable of trapping and stabilizing certain unstable drug molecules, offering benefits and application possibilities. One kind of cyclodextrin particle with characteristic shapes of dicyclodextrin channel moieties and parallel tubular cavities, which was synthesized by a facile process. Subsequently, the spatial structure and characteristics of the ß-CD-POF(I) were primarily confirmed. The structure of ß-CD-POF(I) was then compared to that of KOH-ß-CD-MOF, and a better material for vitamin A palmitate (VAP) encapsulation was determined. VAP was successfully loaded into the particles by solvent-free method. The arrangement of spatial structure made cyclodextrin molecular cavity encapsulation in ß-CD-POF(I) more stable for VAP capture than that of KOH-ß-CD-MOF.


Assuntos
Ciclodextrinas , Diterpenos , Estruturas Metalorgânicas , beta-Ciclodextrinas , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...